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Quasiparticle damping in two-dimensional tight-binding 
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and Department of Applied Physics and InslitUte of Condensed Matler Physics, Jno 
lbng University, Shanghai 2w030, People's Republic of Chinat 
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Abstract The quasiparticle damping and the phase space are studied through the Fermi 
liquid analysis for a non-half-filled two-dimensional wealdy inleracting tight-binding Fermi 
system. The In T or w2 In w dependence of the damping is oblained, in the same 
way a6 for ZD Fenni systems with etIeCtive-mass dispersions. 

In recent years there has been a great deal of interest in the question of whether 
or not Landau's mean field theory of Fermi liquids is valid in two-dimensional (m) 
Fermi systems [I], especially since the discovery of high-temperature superconductors. 
A Fermi surface [Z] and anomalies in the normal state of Cu-0 high-temperature 
superconductors [3] have been observed, the latter being unlike those observed in any 
other metals and not as expected for a Fermi liquid. So there is a suggestion that 
the normal state of the high-temperature superconductors may not be an ordinary 
Landau-Fermi liquid [MI. Ttvo of the basic factors that make the systems non-Fermi- 
liquid-like may be the low dimensionality and the tight-binding energy structure of the 
systems. It thus seemed important to us to study the ZD tight-binding Fermi systems 
to seek a clue to the question. 

Low dimensionality may lead to singular consequences. The three-dimensional 
( 3 ~ )  interacting Fermi systems are well described by the Fermi liquid theory [J. The 
quasiparticle damping, namely the imaginary part of the single-particle self-energy 
Im C is proportional to TZ or w 2 ,  where T is the absolute temperature and w is the 
energy measured from the Fermi energy. The analysis [SI of the one-dimensional (ID) 
electron systems by the use of the Fermi liquid theory gNes Im C - T or w, which 
implies the disappearance of the discontinuity of the momentum disvibution nk and 
the quasiparticle weight zkp = 0. So the ID interacting Fermi systems are non-Fermi- 
liquid-like. The ground state of 2~ interacting Fermi systems is not completely clear 
at the present time. The calculations [9-131 for ZD fermions with an effective-mass 
dispersion model show that the leading term of Im C is proportional to T2 In T or 
wz In w. In addition, we can show that the quasiparticle weight tk # 0, and nl: has a 
discontinuity at k = k,. Thus, although the ZD quasiparticle damping is stronger than 
that in 3D systems, it is still small compared with the quasiparticle energy given by T 
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or W ,  Le., the quasiparticle lifetime near the Fermi energy is long enough. In other 
words, the quasiparticles are well defined and Landau-Fermi liquid theory is valid 
in such 2D systems. The same conclusion is obtained for 2D itinerant Fermi systems 
[12]. In this letter we wilt study the quasiparticle damping and the phase space for 
the non-half-aed m weakly interacting tight-binding Fermi systems The T2 In T or 
w2 In w dependence of the damping is obtained, as it is for w) Fermi systems with 
effective-mass dispersions. 

Tight-binding energy structure may also lead to singular consequences. By in- 
cluding the electron-electron scattering terms corresponding to a typical nesting mo- 
mentum for the m tight-binding model, the quasiparticle damping is shown [6,14] 
to be proportional to T or w, which is different from what is found for both the 3D 
Landau-Fermi liquid and the 2D Fermi liquid with effective-mass models. This is true 
for perfect-nesting Fermi systems. Here we consider the non-half-filled case with the 
following Hamiltonian: 

H = E,, CLr ek0 + U kz,+qTCL-ql C,, CktT (1) 
,U k,k';q#O 

where U > 0 denotes the on-site Coulomb repulsion and &,(eb) is the creation 
(annihilation) operator of an electron with momentum k and spin U within a tight- 
binding band 

E, = -2 t [cos(k , )  +cos(k,)] (2) 

with 8t the width of the band. The quasiparticle damping, i.e., the imaginary part of 
the single-particle self-energy, is given by [U] 

- (cot6 2T - tanh - 
2 T  

dw' w - Wf ImC(k,w) = J -- 2a 

x Im G(k',w'')Im G ( k ' f q , w " + w - w ' ) T ( k , k ' ; k ' + q , ; E - q ) I ~ 3 )  

where G(k, w )  denotes the Green's function and I'(k,k'; k' + q,  k - q )  denotes the 
vertex part. The conventional T2-term is given by [16] 

Im c ( 2 ) ( k , 0 )  = + ( r T u ) 2 C I m  G(B - q , o ) q ( q )  (4) 
P 

where q(q)  is the phase space available for scattering quasiparticles through waveveo 
tor q from k to k f q, 

We consider the second-order term in U, namely within the Born approximation, 
where Green's function G and the vertex part r are replaced by the corresponding 
unperturbed values, respectively. In this limit, from (2) and (5) one finds 

1(9) = [ ~ / ( 2 W E ( c r , f )  (6) 
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with 

E(9.f)  = 1/{JZ~~t(1-eos(9*+q,)-2g2(9~,qy;f))l’~ 

+ (1 -cos(9,-9,)-2g2(q,,-q,;f))1’Zl}+(q, --%) (7) 

and 

de,  4,; f) = $(.i.(n,) + 4 9 , ) )  - f2/[cot(9,/2) + COt(9,/2)1 
112  

+ [{f2/[cot(e/2)  + cot(9,/2)lj2 + [f.in(n, - qv)/21’] . (8) 

In (8) f = -p/2t, with p the chemical potential. Obviously this phase space is 
strongly dependent on the wavevector q and the chemical potential p. For the half- 
filled-band case, q(q) - ( co~(q , ) - cos (q~) ) -~ ,  which is divergent along the [lli] or 
[I101 direction. For the nearly half-filled cases, there is ridge of q(q) along the entire 
[11(%)0] direction arising from transitions along the edge of the Fermi surface. These 
same transitions will contribute strongly to the imaginary part of the susceptibility Im 
x(q,w) for small w. We think that such a strong q dependence of Im x(q,w)  must 
be taken into account in modelling the recent nested-Fermi-liquid model [6]. For 
nearly empty or nearly filled cases, q(q) - (q,/-)-l, which is divergent for 
q = 

We next turn to a calculation of the quasiparticle damping. We now need to 
include the quasiparticle scattering terms corresponding to all the possible transfer 
momenta as illustrated above. Using (6)-(8), within the Bom approximatioh we find 
from (4) that 

q$ + q2 = 0 or 2kp c 

Im c ( ’ ) ( E , o )  +ca. (9) 

It is easy to see that the divergence is due to the special scattering processes. For 
example, for nearly half-filled cases, the transfer of momentum is given as q, = qy ,  
while for nearly empty or nearly filled cases, the transfer of momentum is 0 or 2kF. 
This divergence implies that the leading term of the imaginary part of the self-energy 
is not proportional to T 2  or w2. 

On the other hand, we can show that the leading term of the imaginary part of 
the self-energy is not proportional to T or w. This result is independent of the details 
of the dispersion, so long as the Green function has the quasiparticle form, i.e. Im 
G(k ,  w )  - zh6( E; - p - w),  where E; is the renormalized quasiparticle energy. At 
T = 0,  we expand Im C ( k , w )  to the T- or w a d e r .  For f # 0, the corresponding 
coefficient is given by 

[a Im C ( k , w ) / & ~ ] l ~ = ~ = ~  = [a Im ~ ( k , w ) / a ~ ] I ~ = ~ = ~  = 0 .  (10) 

Thus, we may write 

- [?rTu2/(2t)2]F(k,?rT/21)  if T > IwI 

-[wU2/(2t)Z] F ( k ,  w / 2 t )  if T > [wI 
Im C ( k , w )  - 
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where F(k ,e )  is vanishingly small but F ( e ) / e  is divergent in the E - 0 limit, as 
indicated by (10) and (9). The leading term of F(k ,e )  is given by 

In some limiting cases, using (7) and (S) in (12), we get the following results for the 
small-c limit. For example, for nearly empty and nearly filled cases, 

F ( ~ , E )  N [3e/32n3(2 - f ) ] l n l ( 2  - f ) / ~ l .  

F ( ~ , E )  N (e/4nS)Inll/cl. (14) 

~ ( k ,  E )  N (3&/32n3fi)lnlfi/~l. (1s) 

(13) 

For nearly quarter-filled cases, 

For nearly half-filled cases, 

The numerical calculations show that F ( k ,  E )  is proportional to z In E for the general 
cases (f # 0). Clearly, such a quasiparticle damping (equations (11)-(IS)) is small 
compared with the quasiparticle energy given by T or w. Therefore we can define 
quasiparticles in the non-half-filled 2~ weakly interacting tight-binding Fermi systems. 
This is the same as for the ZD Fermi systems with effective-mass dispersions where 
the Fermi liquid theory is valid [9-131. 

We now have to discuss the effect of including the higher-order terms in U. As 
shown in (3), the effect on Im C results from both the renormalization for the Green's 
function by zk and E; and the vertex function r ( k ,  k'; k' + q ,  k - 9). We note that 
the quasiparticle weight zk is not included in the delta function in the imaginary part 
of the Green's function. So the only effect on Im C results from the renormalized 
quasiparticle energy E;. We know that the T2 In T or w2 In w dependence of 
the damping is not altered by the renormalization for the quasiparticle energy E;, 
and thus by the renormalization for the Green's function. As for the vertex function 
F(k,k';  k' + q ,  k - q ) ,  since it is difficult to determine its detailed form in ZD tight- 
binding systems, its effect on Im C is currently unknown. A further study is needed 
for the VerteX function r. It should be pointed out that the possible singularities in 
the vertex function may also make the system non-Fenni-liquid-like. 

The work was supported by grants made by the China National Natural Science 
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